

4-Piperidone – A synthon for spiro-heterocycles

V Padmavathi^{a*}, T V Ramana Reddy^b & K Audisesh Reddy^b

^a Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India

^b Chemical Laboratory, SPROB, SDSC-SHAR (ISRO), Sriharikota 524 124, India

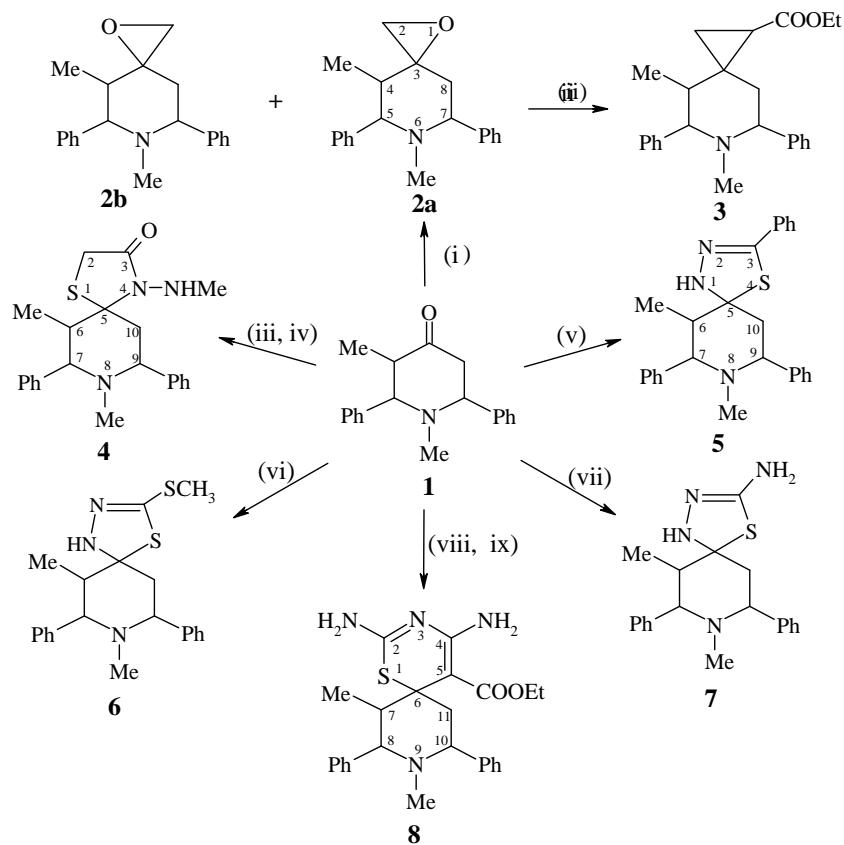
E-mail: vkkpuram2001@yahoo.com

Received 29 August 2005; accepted (revised) 29 November 2006

A new class of spiro compounds piperidino-oxirane, -cyclopropane, -thiazolidone, -thiadiazole and -thiazine have been developed from tetra substituted 4-piperidone adopting modern synthetic methodologies.

Keywords: 4-Piperidone, microwave, ultrasound, spiro piperidino-oxirane, piperidino-cyclopropane, piperidino-thiazolidone, piperidino-thiadiazole, piperidino-thiazine

IPC: Int.Cl.⁸ C07D


In recent years there has been a great deal of interest in exploring proximal functional groups for designing novel structures capable of performing a variety of functions. One such class of compounds constitute 4-piperidone and their derivatives whose syntheses and stereodynamics are well investigated¹. In fact, substituted piperidones are the constituents of a variety of alkaloids which possess a broad spectrum of biological activity². Inspite of these extensive studies there is still a scope for exploring the utility of 4-piperidones as synthons for a variety of compounds. In general, an in-built spiro system in heterocyclic ring increases the biological potency and more so with such systems having smaller rings. In fact, heteroatoms in small rings affect bond angles, bond lengths and bond strengths through a combination of factors including their intrinsic hybridization, magnitude of covalent radii, angle-bending constants, non-bonded interactions and long-range electronic effects.

The main objective of the present paper is to study the reactivity of 1,3-dimethyl- 2,6-diphenylpiperidin-4-one **1** by functionalization of carbonyl group in **1** to develop various spiro compounds *viz.*, piperidino-oxirane, -cyclopropane, -thiazolidone, -thiadiazole and -thiazine. To accelerate the various reactions and to modernize classical procedures, microwave irradiation and ultrasound techniques were employed. The approach on coupling of microwaves³ and ultrasound⁴ with conventional methods proved to be viable for various types of reactions as there are many obvious

advantages *viz.*, less reaction time, avoiding the side reactions, better yield and ease of the isolation of products *etc.*

Results and Discussion

Cycloaddition of dimethylsulfoxonium methylide⁵ to carbonyl moiety of **1** in the presence of KOBu^t in dry DMSO under ultrasonication resulted in the formation of isomers of 4,6-dimethyl-5,7-diphenyl-1-oxa-6-azaspiro[2.5]octane **2**. They were separated by column chromatography and identified as one with equatorial oxygen **2a** (58%) and the other with axial oxygen **2b** (15%). However, cycloaddition of diazomethane to *cis*-1-methyl-2,6-diaryl-4-piperidones gave the corresponding oxiranes stereoselectively⁶ (**Scheme I** and **Table I**). The methine (C-4, C-5, C-7) and methylene (C-8) protons of piperidine ring in **2a** and **2b** in their ¹H NMR spectra displayed a doublet at δ 3.27 and 3.25 (C₅-H_{ax}), a multiplet at δ 2.41-2.56 and 2.38-2.54 (C₄-H and C₈-H_{ax}), a doublet at δ 3.52 and 3.54 (C₇-H_{ax}) and another doublet at δ 2.13 and 2.10 (C₈-H_{eq}), respectively. The methyl protons at C-4 showed a doublet at δ 0.62 in **2a**, whereas at 1.13 ppm in **2b**. The downfield shift of methyl protons in **2b** confirms that the methyl group and oxygen are in the same plane and also in close proximity with each other. The methylene protons of the oxirane ring (C₂-H) exhibited two doublets at δ 2.68 and 2.65 and 2.89 and 2.91 in **2a** and **2b**, respectively. The compound **2a** on treatment with

Scheme I

triethylphosphonoacetate in the presence of KOBu^t in dry DMSO under ultrasound conditions resulted in spiro cyclopropane derivative, ethyl 4,6-dimethyl-5,7-diphenyl-6-azaspiro[2.5]octane-1-carboxylate **3** with retention of configuration as per Denny's mechanism⁷ (**Table I**). The ¹H NMR spectrum of **3** displayed two double doublets at δ 1.79 and 1.85 (C₂-H), a double doublet at δ 2.09 (C₈-H_{eq}), a multiplet around δ 2.36-2.49 (C₈-H_{ax} and C₄-H), a double doublet at δ 2.63 (C₁-H), a doublet at δ 3.30 (C₅-H) and a double doublet at δ 3.49 (C₇-H).

On the other hand, treatment of **1** with N-methyl-hydrazine produced *N*-methylhydrazone. Cyclization

of the latter with thioglycolic acid gave 6,8-dimethyl-4-methyl-amino-7,9-diphenyl-1-thia-4,8-diazaspiro[4.5]decan-3-one **4**, a novel spiro heterocyclic compound. The ¹H NMR spectrum displayed signals for different protons as a multiplet in the region δ 2.45-2.62 (C₆-H and C₁₀-H), a singlet at δ 3.28 (C₂-H), a doublet at δ 3.36 (C₇-H), a double doublet at δ 3.50 (C₉-H) and a singlet at δ 5.83 (NH).

Generally, the reaction of substituted hydrazines with aldehydes and ketones produces corresponding hydrazone. In fact, spiro thiadiazoline derivatives were prepared by cyclization of thiosemicarbazones of piperidinone derivatives using acetic anhydride⁸.

Table I—Physical data of compounds **2-8**

Compd	m.p. (°C)	Yield (%)	Mol. formula (Mol. wt.)	Found % (Calcd)		
				C	H	N
2a	106-08	58	C ₂₀ H ₂₃ NO (293.40)	81.67 (81.87)	7.81 7.90	4.83 (4.77)
2b	120-22	15	-	-	-	-
3	92-93	67	C ₂₄ H ₂₉ NO ₂ (363.49)	79.53 (79.30)	8.12 8.04	3.78 (3.85)
4	154-56	54	C ₂₂ H ₂₇ N ₃ OS (381.54)	69.45 (69.26)	7.01 7.13	11.18 (11.01)
5	122-23	82	C ₂₆ H ₂₇ N ₃ S (413.58)	75.26 (75.51)	6.68 6.58	10.30 (10.16)
6	168-70	73	C ₂₁ H ₂₅ N ₃ S ₂ (383.58)	65.88 (65.76)	6.49 6.57	10.82 (10.95)
7	147-49	61	C ₂₀ H ₂₄ N ₄ S (352.50)	68.32 (68.15)	6.77 6.86	16.04 (15.89)
8	186-88	45	C ₂₅ H ₃₀ N ₄ O ₂ S (450.60)	66.50 (66.64)	6.82 6.71	12.58 (12.43)

Contrary to this, it was reported that the treatment of thioaroylhydrazine with an ethanolic solution of aldehyde or ketone in the absence of acidic catalyst gave cyclized product, 1,3,4-thiadiazoline directly⁹. Similarly, when the reaction of **1** was carried out with substituted hydrazines *viz.*, thiobenzoylhydrazide, methylhydrazine carbodithioate and thiosemicarbazide in the presence of piperidine in ethanol resulted in 6,8-dimethyl-3,7,9-triphenyl-4-thia-1,2,8-triazaspiro[4.5]dec-2-ene **5**, 6,8-dimethyl-3-methyl-sulfanyl-7,9-diphenyl-4-thia-1,2,8-triazaspiro[4.5]dec-2-ene **6** and 3-amino-6,8-dimethyl-7,9-diphenyl-4-thia-1,2,8-triazaspiro[4.5]dec-2-ene **7**, respectively. The ¹H NMR spectrum of **5** displayed a doublet at δ 2.46 (C₁₀-H_{eq}), a multiplet around δ 2.55-2.68 (C₆-H), a triplet at δ 2.85 (C₁₀-H_{ax}), a doublet at δ 3.30 (C₇-H), a doublet at δ 3.57 (C₉-H) and a broad singlet at δ 9.03 (NH). The compounds **6** and **7** also exhibited signals almost in the same region as in the case of **5**. Apart from this, **6** showed a singlet at δ 2.59 for S-CH₃ and **7a** broad singlet at δ 5.69 for NH₂ at C-3.

Besides, the reaction of **1** with ethyl cyanoacetate gave an unsaturated cyano derivative, which on cyclocondensation with thiourea produced ethyl 2,4-diamino-7,9-dimethyl-8,10-diphenyl-1-thia-3,9-diazaspiro[5.5]undeca-2,4-dien-5-carboxylate **8** (**Scheme I** and **Table I**). The ¹H NMR spectrum showed signals for different protons as a doublet at δ 2.28 (C₁₁-H_{eq}), a multiplet at δ 2.36-2.48 (m, C₇-H and C₁₁-H_{ax}), a doublet at δ 3.30 (C₈-H) and a doublet at δ 3.56 (C₁₀-H).

Thus, it is significant that 4-piperidone is utilized as a potential synthon for different heterocycles using modern synthetic tools such as ultrasonication and modified conventional routes. The structures of all the compounds were further confirmed from their ¹³C NMR spectra.

Experimental Section

Melting points are uncorrected and were determined with Veego-PMP/DM apparatus. IR spectra were recorded on Perkin-Elmer FT-IR 1600 series spectrometer in KBr pellets. The ¹H and ¹³C NMR spectra were recorded in CDCl₃/DMSO-d₆ on Brucker DPX-300 spectrometer operating at 300 MHz and 75.5 MHz, respectively. All chemical shifts were reported in δ (ppm) using TMS as an internal standard. The microanalyses were performed on Perkin-Elmer 240C elemental analyzer. All the solvents and reagents were obtained from commercial sources and purified before use as necessary. Ultrasonication was carried out by using Bandelin Sonorex Digitec RK 100H high-power ultrasonic-bath type sonicator. The compound **1** was prepared as per the procedure reported earlier¹⁰.

General procedure for the synthesis of 4,6-dimethyl-5,7-diphenyl-1-oxa-6-azaspiro[2.5]octane

2. To a mixture of **1** (0.01 mole), TMSOI (0.013 mole) and dry DMSO (30 mL), KOBu^t (1.0 g) in dry DMSO (10 mL) was added dropwise for a period of 30 min while stirring. Then, the solution was sonicated in ultrasound-bath at RT for 2 hr. It was diluted with water and the agitation continued until a solid was separated out. It was filtered, dried and purified by recrystallization from alcohol. TLC showed two distinct spots indicating the formation of isomeric products **2a** and **2b**, which were separated by column chromatography (silica gel, 60-120 mesh, ethyl acetate:hexane, 1:3).

Compound **2a**: IR (KBr): 3025 (CH₂-O), 2768 (NCH₃), 1245 and 830 cm⁻¹ (C-O-C); ¹H NMR: δ 0.62 (d, 3H, CH₃ at C-4), 1.97 (s, 3H, NCH₃), 2.13 (dd, 1H, C₈-H_{eq}, *J* = 14.0 and 3.4 Hz), 2.41-2.56 (m, 2H, C₄-H and C₈-H_{ax}), 2.68 and 2.89 (2d, 2H, C₂-H, *J* = 4.8 Hz), 3.27 (d, 1H, C₅-H_{ax}, *J* = 9.8 Hz), 3.52 (dd, 1H, C₇-H_{ax}, *J* = 14.2 and 3.6 Hz), 6.93-7.34 (m, 10H, Ar-H); ¹³C NMR: δ 13.64 (CH₃ at C-4), 34.61 (C-8), 38.49 (C-4), 40.25 (NCH₃), 49.76 (C-2), 58.23 (C-3) 66.48 (C-7), 74.52 (C-5).

Compound **2b**: ¹H NMR: δ 1.13 (d, 3H, CH₃, *J* = 6.7 Hz), 2.10 (dd, 1H, C₈-H_{eq}, *J* = 13.6 and 3.4 Hz),

2.38-2.54 (m, 2H, C₄-H and C₈-H_{ax}), 2.65 and 2.91 (2d, 2H, C₂-H, *J* = 4.7 Hz), 3.25 (d, 1H, C₅-H_{ax}, *J* = 9.4 Hz), 3.54 (dd, 1H, C₇-H_{ax}, *J* = 13.8 and 3.5 Hz), 6.95-7.38 (m, 10H, Ar-H).

General procedure for the synthesis of ethyl 4,6-dimethyl-5,7-diphenyl-6-aza-spiro[2.5]octane-1-carboxylate 3. To a well stirred mixture of dry DMSO (20 mL) and KOBu^t (1.0 g), triethylphosphonoacetate (0.0055 mole) was added dropwise till the evolution of gas ceased. Then, compound 2a (0.005 mole) was added in portions over a period of 20 min and the mixture was sonicated at 65-70°C for 6 hr. The solution was then cooled and poured onto crushed ice. The solid separated was filtered and purified by recrystallization from alcohol.

Compound 3: IR (KBr): 2760 (NCH₃), 1726 (Ester CO), 1190 cm⁻¹ (C-O-C); ¹H NMR: δ 0.96-1.13 (m, 6H, CH₃ at C-4 and OCH₂CH₃), 1.79 (dd, 1H, C₂-H, *J* = 11.6 and 3.3 Hz), 1.85 (dd, 1H, C₂-H, *J* = 11.4 and 3.2 Hz), 1.92 (s, 3H, NCH₃), 2.09 (dd, 1H, C₈-H_{eq}, *J* = 14.2 and 3.5), 2.36-2.49 (m, 2H, C₈-H_{ax} and C₄-H), 2.63 (dd, 1H, C₁-H, *J* = 13.6 and 3.2 Hz), 3.30 (d, 1H, C₅-H, *J* = 10.0 Hz), 3.49 (dd, 1H, C₇-H, *J* = 14.4 and 3.6 Hz), 3.98 (q, 2H, OCH₂CH₃), 6.88-7.10 (m, 10H, Ar-H); ¹³C NMR: δ 10.23 (CH₃ at C-4), 13.71 (OCH₂CH₃), 22.58 (C-2), 24.23 (C-3), 34.19 (C-8), 37.60 (C-4), 41.07 (NCH₃), 58.23 (OCH₂CH₃), 65.16 (C-7), 75.02 (C-5).

General procedure for the synthesis of 6,8-dimethyl-4-methylamino-7,9-diphenyl-1-thia-4,8-diazaspiro[4.5]decan-3-one 4. To a solution of 1 (0.01 mole) in absolute alcohol (25 mL), methylhydrazine (0.015 mole) and a few drops of acetic acid were added. The contents were refluxed for 4 hr, cooled and diluted with water. The separated solid was filtered, dried and purified by recrystallization from aq. methanol. Yield 87%; m.p. 153-154°C. IR (KBr): 3286 (NH), 1632 cm⁻¹ (C=N).

A mixture of above hydrazone (0.005 mole), thioglycolic acid (0.007 mole) and catalytic amount of Et₃N in DMF (25 mL) was refluxed for 10 hr. Then, the contents were poured into crushed ice and neutralized with NaHCO₃ solution. The solid was collected by filtration, dried and purified by recrystallization from alcohol.

Compound 4: IR (KBr): 3326 (NH), 2765 (NCH₃), 1693 (C=O), 682 cm⁻¹ (C-S-C); ¹H NMR: δ 1.06 (d, 3H, CH₃ at C-6), 2.13 (s, 3H, NCH₃), 2.36 (d, 3H, NHCH₃), 2.45-2.62 (m, 3H, C₆-H and C₁₀-H), 3.28 (s, 2H, C₂-H), 3.36 (d, 1H, C₇-H, *J* = 9.7 Hz), 3.50 (dd, 1H, C₉-H, *J* = 13.8 and 3.8 Hz), 5.83 (s, 1H, NH),

6.81-7.17 (m, 10H, Ar-H); ¹³C NMR: δ 12.33 (CH₃ at C-4), 32.71 (C-10), 34.04 (C-6), 38.49 (NHCH₃), 41.22 (NCH₃), 44.60 (C-2), 65.32 (C-7), 74.07 (C-7), 80.23 (C-5), 171.25 (C-3).

General procedure for the synthesis of 6,8-dimethyl-3,7,9-triphenyl-4-thia1,2,8-triazaspiro[4.5]-dec-2-ene 5/6,8-dimethyl-3-methylsulfanyl-7,9-diphenyl-4-thia1,2,8triazaspiro[4.5]dec-2-ene 6/3-amino-6,8-dimethyl-7,9-diphenyl-4-thia1,2,8-triazaspiro[4.5]dec-2-ene 7. To the compound 1 (0.005 mole) in ethanol (20 mL), piperidine (5 drops) and thiobenzoyl-hydrazine/methylhydrazine carbodithioate/thiosemicarbazide (0.007 mole) was added and sonicated at 50-60°C for 4-5 hr. The contents were concentrated and cooled in an ice-bath. The solid separated was filtered, washed with aq. ethanol and purified by recrystallization from benzene-ethanol mixture.

Compound 5: IR (KBr): 3284 (NH), 2761 (NCH₃), 1624 (C=N), 653 cm⁻¹ (C-S); ¹H NMR: δ 0.93 (d, 3H, CH₃ at C-6), 2.07 (s, 3H, NCH₃), 2.46 (dd, 1H, C₁₀-H_{eq}, *J* = 13.8 and 3.7 Hz), 2.55-2.68 (m, 1H, C₆-H), 2.85 (t, 1H, C₁₀-H_{ax}), 3.30 (d, 1H, C₇-H, *J* = 10.2 Hz), 3.57 (dd, 1H, C₉-H, *J* = 14.0 and 3.6 Hz), 6.76-7.10 (m, 15H, Ar-H), 9.03 (s, 1H, NH); ¹³C NMR: δ 12.93 (CH₃ at C-6), 39.86 (NCH₃), 43.71 (C-10), 45.87 (C-6), 66.54 (C-7), 75.85 (C-9), 83.32 (C-5), 153.86 (C-3).

Compound 6: IR (KBr): 3262 (NH), 2753 (NCH₃), 1615 (C=N), 660 cm⁻¹ (C-S); ¹H NMR: δ 0.88 (d, 3H, CH₃ at C-6), 1.72 (s, 3H, NCH₃), 2.41 (dd, 1H, C₁₀-H_{eq}, *J* = 14.4 and 4.0 Hz), 2.59 (s, 3H, SCH₃), 2.71-2.75 (m, 2H, C₆-H and C₁₀-H_{ax}), 2.93 (d, 1H, C₇-H, *J* = 9.7 Hz), 3.23 (dd, 1H, C₉-H, *J* = 13.7 and 3.8 Hz), 6.90-7.62 (m, 10H, Ar-H), 10.05 (s, 1H, NH); ¹³C NMR: δ 13.70 (CH₃ at C-6), 19.06 (SCH₃), 39.35 (NCH₃), 43.92 (C-10), 45.71 (C-6), 67.28 (C-7), 75.22 (C-9), 85.60 (C-5), 155.07 (C-3).

Compound 7: IR (KBr): 3240-3310 (NH and NH₂), 2770 (NCH₃), 1628 (C=N), 640 cm⁻¹ (C-S); ¹H NMR: δ 1.05 (d, 3H, CH₃ at C-6), 2.19 (s, 3H, NCH₃), 2.38 (dd, 1H, C₁₀-H_{eq}, *J* = 14.2 and 3.9 Hz), 2.50-2.61 (m, 1H, C₆-H), 2.79 (t, 1H, C₁₀-H_{ax}), 3.39 (d, 1H, C₇-H, *J* = 10.0 Hz), 3.50 (dd, 1H, C₉-H, *J* = 14.2 and 3.8 Hz), 5.69 (bs, 2H, NH₂), 6.80-7.46 (m, 10H, Ar-H). ¹³C NMR: δ 12.63 (CH₃ at C-6), 40.08 (NCH₃), 44.13 (C-10), 46.52 (C-6), 65.80 (C-7), 76.03 (C-9), 84.22 (C-5), 158.45 (C-3).

General procedure for the synthesis of ethyl 2,4-diamino-7,9-dimethyl-8,10-diphenyl-1-thia-3,9-diazaspiro[5.5]un-deca-2,4-dien-5-carboxylate 8. A

mixture of **1** (0.01 mole), ethyl cyanoacetate (0.012 mole), β -alanine (catalytic amount), acetic acid (few drops) and dry benzene (50 mL) was refluxed using Dean-Stark apparatus until the separation of water ceased. The contents were cooled, diluted with benzene and washed with saturated NaHCO_3 solution and water. The organic layer was dried over anhyd. Na_2SO_4 . Evaporation of solvent gave a semisolid product, which was purified by recrystallization from ethanol. Yield 68%, m.p. 108-110°C. IR (KBr): 2216 ($\text{C}\equiv\text{N}$), 1720 (COOEt), 1625 cm^{-1} ($\text{C}=\text{C}$).

A solution of the above unsaturated cyano derivative (0.005 mole), thiourea (0.008 mole) and piperidine (0.5 mL) in ethanol (25 mL) was refluxed for 5 hr. The contents were cooled and poured into crushed ice. The separated solid was filtered and purified by column chromatography (silica gel, 60-120 mesh, ethyl acetate:hexane, 1:2).

Compound **8**: IR (KBr): 3240-3320 (NH_2), 2772 (NCH_3), 1728 (Ester CO), 1626 ($\text{C}=\text{N}$), 1582 ($\text{C}=\text{C}$), 675 cm^{-1} ($\text{C}-\text{S}$); ^1H NMR: δ 1.13-1.26 (m, 6H, CH_3 at C-7 and OCH_2CH_3), 2.20 (s, 3H, NCH_3), 2.28 (dd, 1H, $\text{C}_{11}-\text{H}_{\text{eq}}$, J = 13.8 and 4.0 Hz), 2.36-2.48 (m, 2H, $\text{C}_7\text{-H}$ and $\text{C}_{11}\text{-H}_{\text{ax}}$), 3.30 (d, 1H, $\text{C}_8\text{-H}$, J = 9.8 Hz), 3.56 (dd, 1H, $\text{C}_{10}\text{-H}$, J = 13.8 and 3.6 Hz), 4.07 (q, 2H, OCH_2CH_3), 6.63-7.15 (m, 14H, Ar-H and 2NH_2 at C-2 and C-4). ^{13}C NMR: δ 12.36 (CH_3 at C-7), 13.61 (OCH_2CH_3), 36.55 (C-11), 38.62 (C-7), 40.1 (NCH_3), 56.27 (C-6), 59.03 (OCH_2CH_3), 67.18 (C-8), 74.82 (C-10), 110.66 (C-5), 153.28 (C-4), 164.12 (C-2), 168.75 (ester CO).

Acknowledgement

One of the authors (TVRR) is grateful to Sri S. K. Athithan, Deputy Director and Sri R. N. Bhattacharya,

General Manager, SPROB, SDSC-SHAR for providing the facilities to carry out the research.

References

- a) Noller C R & Baliah V, *J Am Chem Soc*, **70**, **1948**, 3853.
b) Ravindran T & Jeyaraman R, *Indian J Chem*, **31B**, **1992**, 677.
c) Ravindran T, Jeyaraman R, Murray R W & Megh Singh J, *J Org Chem*, **56**, **1991**, 4833.
- a) Rubiralta M, Giralt E & Diez A, *Piperidine Structure, Preparation and Synthetic Applications of Piperidine and its Derivatives*, (Elsevier, Amsterdam), **1991**.
b) Richard W, Edwards Martin Garraffo H & John W D, *Synthesis*, **1994**, 1167.
- a) Kidwai M, Kohli S & Kumar P, *J Chem Res (S)*, **1998**, 52.
b) Loupy A, Petit A, Hamelin J, Texier-Boule F, Jacqualt P & Mathe D, *Synthesis*, **1998**, 1213.
c) Kidwai M & Preeti M, *Synth Commun*, **29**, **1999**, 3237.
d) Verma R S, *Green Chem*, **1**, **1999**, 43.
- a) Lorimer J P & Mason T J, *Chem Soc Rev*, **16**, **1987**, 239.
b) Khurana M, *Chemistry Education*, **1990**, 24.
c) Eshusis J J W, *Tetrahedron Lett*, **35**, **1994**, 7833.
d) Li J T, Li L J, Li T S, Li H Z & Liu J K, *Ultrasonics Sonochemistry*, **3**, **1996**, S141.
- Corey E J & Chaykovsky M, *J Am Chem Soc*, **87**, **1965**, 1353.
- Vijayabaskar V, Perumal S & Selvaraj S, *Indian J Chem*, **38B**, **1999**, 771.
- a) Denney D B, John Vill J & Boskin M J, *J Am Chem Soc*, **84**, **1962**, 3944.
b) Mc Ewen W E, Blade-Front A & Vander Werf C A, *J Am Chem Soc*, **84**, **1962**, 677.
- Balasubramanian S, Ramalingan C & Kabilan S, *Indian J Chem*, **41B**, **2002**, 2402.
- a) Michael Evans D & Taylor D R, *J Chem Soc Chem Commun*, **1982**, 188.
b) Rafiqul I, Joynal Abedin M, Khurshida K & Rabiul Islam M, *Indian J Chem*, **40B**, **2001**, 240.
- Padmavathi V, Ramana Reddy T V, Audisetha Reddy K & Bhaskar Reddy D, *J Heterocyclic Chem*, **40**, **2003**, 49.